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Numerical predictions for serial, parallel, and coactive logical
rule-based models of categorization response time
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Abstract Recent theoretical advances in theories of catego-
rization response times have made it possible to differentiate
mental architectures that specify how processes occurring
over several information-processing channels are combined
(e.g., in serial or in parallel). This article introduces the nu-
merical computations necessary to generate predictions for a
class of logical rule-based models that have recently been
used to account for speeded perceptual categorization judg-
ments (Fifić, M., Little, D.R. & Nosofsky, R. M. . Psycholog-
ical Review, 117:309–348, 2010).
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Recent work in perceptual categorization has built upon the
classic idea that people learn and represent categories by using
simple, logical rules (Bourne, 1970; Bruner, Goodnow, &
Austin, 1956; Levine, 1975; Trabasso & Bower, 1968). That
is, a category might be represented by a conjunction (AND) or a
disjunction (OR) of rules applied to different stimulus dimen-
sions. Fifić, Little, and Nosofsky, (2010) and Little, Nosofsky,
and Denton (2011) proposed a set of logical-rule models capa-
ble of explaining and generating predictions for the full time
course of categorization decision making. By combining
sequential-sampling models (Busemeyer, 1985; Ratcliff, 1978)
with mental-architecture models (Schweickert, 1992; Sternberg,

1969; Townsend, 1984; Townsend&Nozawa, 1995; Townsend
&Wenger, 2004a, 2004b) of response time (RT) in an integrated
framework, the logical-rulemodelsmake predictions at the level
of full RT distributions. This approach has achieved consider-
able success in answering fundamental questions about about
whether multiple stimulus dimensions are processed sequential-
ly in a serial fashion or simultaneously in parallel, or are pooled
into a single, coactive processing channel (Houpt & Townsend,
2011; Miller, 1982; Townsend & Wenger, 2004a, 2004b; see
also Eidels, Houpt, Altieri, Pei, & Townsend, 2011; Palmer &
McLean, 1995; Thornton & Gilden, 2007).

The logical-rule models assume that when presented with
a multidimensional perceptual stimulus, subjects make in-
dependent decisions about the category outcomes predicted
by the values of each of the dimensions. Each independent
decision is instantiated as a separate random-walk process
(Busemeyer, 1985; Luce, 1986). The independent decisions
are then combined according to rules specified by alterna-
tive mental architectures that define the category structure.
For example, consider the category space shown in Fig. 1.
In this category space, the stimuli vary along two continuous
dimensions, x and y, with three values per dimension com-
bined orthogonally to yield nine distinct stimuli. The stimuli
above and to the right of the dotted category boundary are
members of Category A; the remaining stimuli are members
of Category B.

Category A is defined by a conjunction of two rules. That
is, a stimulus is a member of Category A if it has a value
greater than or equal to x1 on dimension xAND greater than or
equal to y1 on dimension y. Consequently, an exhaustive
stopping rule is necessary for combining independent deci-
sions made about the values of x and y in order to classify a
stimulus as a member of Category A. By contrast, a stimulus
is a member of Category B if it satisfies a disjunctive rule; that
is, the stimulus has a value less than x1 on dimension xOR less
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than y1 on dimension y. Hence, a self-terminating stopping
rule is appropriate for combining the features of the Category
B stimuli. An exhaustive stopping rulemight still be applied to
make Category B decisions; however, unlike for Category A,
an exhaustive stopping rule is not mandated by the category
space. These stopping rules may be implemented either seri-
ally, by processing the stimulus dimensions one at a time, or in
parallel, by processing the stimulus dimensions simultaneous-
ly. Alternatively, multiple stimulus dimensions might be
pooled into a single, coactive processing channel (Houpt &
Townsend, 2011; Miller, 1982; Townsend & Nozawa, 1995).

When generating predictions for serial and parallel
combinations of sequential sampling models, simulation
methods have been utilized to generate predictions in
order to fit the models to the observed RTs (Fifić et al.,
2010; Little et al., 2011; Little, Nosofsky, Donkin, &
Denton, 2012; Thornton & Gilden, 2007). One potential
difficulty with developing fast, numerical predictions for
the RT distributions is that the serial and parallel mod-
els both involve a combination of more than one ran-
dom walk. A further complication is that to fit distributions
of the overall RTs, the distribution of decision times must be
convolved with distributions of residual nondecision times.
Though software exists to fit and compute the predictions of
single-channel sequential-sampling models (e.g., fast-DM,
Voss & Voss, 2008; DMAT, This citation should be
Vandekerckhove & Tuerlinckx, 2008; or EZ-diffusion,
Wagenmakers, van der Maas, & Grasman, 2007), combining
multiple predictions of these single-channel models is not
straightforward. Furthermore, these tools are designed to fit
a continuous-time sequential-sampling model (the diffusion
model; Ratcliff, 1978) rather than the discrete-time random-
walk models employed in the logical-rule models (Fifić et al.,

2010; see also Logan, 2002; Nosofsky & Palmeri, 1997;
Thornton & Gilden, 2007). The purpose of this article is to
introduce the numerical computations necessary to generate
predictions for the logical rule-based models (Fifić et al.,
2010; Little et al., 2011; Little et al., 2012).1

The present method adopts a parametric model-fitting
approach, in contrast to the nonparametric results reported
for serial and parallel models (Townsend & Ashby, 1983;
Townsend & Nozawa, 1995; Townsend & Wenger, 2004b).
There are several benefits to adopting a parametric,
sequential-sampling model approach: First, the actual ob-
served behavior may not be best captured by a purely serial
or purely parallel model, but instead one might augment
these processes with additional mechanisms. For example,
in Little et al. (2011), an additional attention-switching
mechanism was necessary to capture the time taken to
switch responding from one serially processed dimension
to the next. This approach allows for efficient exploration of
the space of the cognitive processes and mechanisms that
may be relevant to decision making. Second, this approach
allows for direct comparison of a number of different mod-
els. For instance, Fifić et al. (2010) tested the predictions of
eight other models, including two sequential-sampling mod-
els that are among the leading theoretical models in the field
(i.e., the exemplar-based random-walk model [EBRW;
Nosofsky & Palmeri, 1997] and stochastic general recogni-
tion theory [GRT; Ashby, 2000]). Third, sequential-
sampling models have recently been shown to be neurally
plausible models of decision making. For example, Smith
(2010) recently showed that, under certain conditions, a
model of neural firing converges to a sequential-sampling
process that mimics the approach taken in the present report
(see also Smith & Ratcliff, 2004; Smith & McKenzie,
2012). Finally, the present approach was adopted in the
models of perceptual categorization presented in Fifić et
al. (2010) and Little et al. (2011). The findings of those
reports provide a challenge to existing models, which do not
take into account the decision-making architecture. In sum,
the benefits include the ease with which the models can be
tested, extensibility, neural plausibility, and a relation to
previously published work; however, the parametric ap-
proach taken here should be viewed as complementary to
the nonparametric approach. In fact, the two approaches can
provide converging evidence regarding the underlying cog-
nitive architecture (Eidels, Donkin, Brown, & Heathcote,
2010).

In the following section, the computations for single-
channel random walks are introduced, followed by the
methods necessary to combine these channels into serial
and parallel processes.

Fig. 1 Schematic illustration of the category space used for testing the
logical-rule models. The stimuli are composed of two dimensions, x
and y, with three values per dimension, combined orthogonally to
produce the nine members of the stimulus set. The stimuli in the
upper-right quadrant of the space are the members of Category A,
whereas the remaining stimuli are the members of Category B

1 MATLAB code for all of the computations is provided in the online
supplement.
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Single-channel random-walk models

In the logical-rule models, a decision about a single stimulus
feature is represented by a single-channel random walk.
Random-walk models are a class of sequential-sampling
models in which discrete evidence accumulation drives a
decision process that is completed in discrete time. Figure 2
illustrates the standard random-walk process for three ex-
ample trials. Information accumulation begins at a starting
point, 0, and at each time step, with probability p takes a
step toward the upper boundary, +A, or with some probabil-
ity q 0 1 – p takes a step toward the lower boundary, –B.2 In
a random walk, the boundaries may be equidistant from the
starting point (i.e., A 0 B) or may be located at different
distances from the starting point. In both cases, there are m 0

A + B – 1 transient steps between the boundaries (see, e.g.,
Diederich & Busemeyer, 2003). When the position of the
decision process hits one of the boundaries, the process ends
and the response is executed; hence, the total number of
states in the random walk is NT ¼ mþ 1 ¼ Aþ B; that is,
the total number of possible positions in the random walk is
the number of transient steps, plus one for the absorbing or
terminating step at either of the boundaries. In most appli-
cations, the boundaries are at different distances from the
starting point; NA 0 A is the number of steps from the
starting point to the +A boundary, and NB 0 B is the number
of steps from the starting point to the –B boundary.

For a single-channel random-walk process, analytic sol-
utions are well known for calculating the probability that the
process terminates at the upper boundary or the lower
boundary, along with the expected number of steps that it
takes to terminate at that boundary. For example, Busemeyer
and Diederich (Busemeyer & Diederich, 2010, p. 117;
Diederich & Busemeyer, 2003) used a matrix representation
of the random walk to derive predictions for the choice
probabilities, expected decision times, and distribution of
the decision times. The probability of responding with the
response, R, associated with either boundary +A or –B,
starting from zero, is

P R ¼ Að Þ ¼
NB
NT

; if p ¼ q

1� q
pð ÞNB

1� q
pð ÞNT ; if p 6¼ q

8<
: ð1Þ

For P(R 0 B), replace q/p with p/q and NB with NA. The
expected number of steps, N, in the random walk, assuming
starting from zero, is given by

EðNÞ ¼
NA � NB; if p ¼ q;

NB
q�p � NT

q�p

1� q
pð ÞNB

1� q
pð ÞNT

� �
if p 6¼ q:

8<
: ð2Þ

The first-passage-time probabilities (i.e., the probabilities
assigned to the possible times when the random walk first
hits a boundary) for ending the random walk after N steps at
boundary +A (see Feller, 1968) is given in Busemeyer and
Diederich (2010, chap. 4 appendix; see also the appendix of
Ratcliff, 1978) as

f N ; R ¼ Að Þ ¼ 2Nþ1

NT

ffiffiffiffiffi
pq

p� �Nþ1
ffiffiffi
p
q

q� �NA

�Pm
j¼1

cosN p�j
NT

� �
sin p�j�NA

NT

� �
sin p�j

NT

� �
:

ð3Þ

For f(N, R 0 B), replace p/q with q/p and NA with NB.
Note that the sum in Eq. 3 is over all of the possible transient
positions (i.e., all of the possible distances from the +A
boundary). Equation 3 is not a probability distribution;
summing f(N, R 0 A) over N will give p(+A). Dividing f
(N, R 0 A) by p(+A) will give the conditional probability of
ending at boundary A at time step N. Summing f(N, R 0 A)
and f(N, R 0 B) at each time step will give the total proba-
bility of the random walk terminating at time step N.

Equation 3 gives the probability of ending the random
walk after a number of steps, N, at the A boundary. In the
logical-rule models, the number of steps is scaled to milli-
seconds by multiplying N by a scaling constant k.

Nondecision time

The equations above allow one to compute the decision
component of the RT. In the logical-rule models, it is also
assumed that an additional, nondecision time component is

2 Here we use the formulation adopted by Nosofsky and Palmeri
(1997). Feller (1968, chap. 14) and Ratcliff (1978) used an alternative
formulation of the random walk based on the gambler’s ruin problem,
which sets a lower boundary of zero, an upper boundary at A, and a
starting point, Z, between 0 and A. Both formulations are equivalent.

Fig. 2 Random walk example showing three possible sampling paths.
At each discrete time step, the process takes a step up or down until
terminating at either the upper (i.e., the solid lines) or lower boundaries
(i.e., the dashed line). The boundary that the processes ends at deter-
mines the response and the total number of steps determines the time
taken to make the decision
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necessary to account for processing related to stimulus
encoding and response execution. This nondecision time is
assumed to be log-normal with a mean μR and variance σ2R.
A log-normal distribution provides an approximation to
simple RT distributions because it is bounded at zero and
has a positive skew (see, e.g., Luce, 1986). A log-normal
nondecision time distribution, d(x), can be added to the
random-walk model by convolving the decision time distri-
bution, f(N, R 0 A), with the nondecision time distribution:

f � d½ � N ; R ¼ Að Þ ¼
XN
k¼0

f k; R ¼ Að Þd N � kð Þ: ð4Þ

Determining p and q

The logical rule models incorporate the assumptions of
general recognition theory (GRT; Ashby & Townsend,
1986) to determine the probability of taking a step toward
the +A boundary. Specifically, for a given stimulus, the
models assume that the subject establishes boundaries along
each dimension, as illustrated in Fig. 1, and determines to
which side of the boundary the value of the dimension falls
(Ashby & Townsend, 1986). The perception of stimulus
values along each dimension is assumed to be noisy; hence,
there is a normal distribution of percepts (see Fig. 3) asso-
ciated with each stimulus value along each dimension. The
total probability of taking a step toward the +A boundary is
determined by the proportion of the distribution that falls in
the A region of the stimulus space:

p ¼
Z 1

Di
N xi;μD;σ

2
D

� �
dxi; ð5Þ

where Di is the boundary position on dimension D, and the
percept on each dimension is normally distributed with
mean μD and variance σ2

D. For coactive models, the
single-channel random walk is driven by the joint bivariate
normal distribution on x and y (see, e.g., Little et al., 2012),
with mean vector μxy and covariance ∑xy; hence,

p ¼
Z 1

Dy

Z 1

Dx

MVN xi; yj;μxy;
X
xy

 !
dxidxj: ð6Þ

In general, stimuli with values that lie far from the
decision bound (e.g., value x2 in Fig. 1) will lead to
faster and more accurate decisions than will those that
lie close (e.g., value x1 in Fig. 1), because the random
walk will take more consistent steps toward the appro-
priate response criterion.

Note that for the serial and parallel models, described in
the following sections, the probabilities for taking a step
toward the +A boundary are determined separately for each
of the random walks in the model, using Eq. 5 with a mean,
μDx, and variance, σ2Dx, for dimension x and a separate
mean, μDy, and variance, σ2Dy for dimension y. In Fifić et
al. (2010) and Little et al. (2011), the stimulus dimensions
were assumed to be perceptually independent; that is, μDx

6¼ μDy and s2Dx 6¼ s2Dy.
3 Furthermore, the two channels were

assumed to be decisionally independent; that is, the bound-
aries on each dimension, Dx and Dy, were assumed to be
orthogonal to the dimensional axis. A further strength of the
parametric approach is that these assumptions can be sys-
tematically varied to examine the resulting RT predictions
independent of any assumptions about the underlying archi-
tecture. This exploration is beyond the scope of the present
article but is addressed elsewhere (Little et al., 2012).

Summary

Within the logical-rule modeling framework, single-channel
random-walk models are used to model the decision times
associated with individual stimulus dimensions. Several
existing models of RTs also employ single-channel architec-
tures (e.g., EBRW, Nosofsky & Palmeri, 1997; stochastic
GRT, Ashby, 2000; and the integrated theory of attention,
Logan, 2002). Single-channel coactive models are also used
within the logical-rule framework to capture performance on
stimuli that require pooling across stimulus dimensions prior
to initiating the decision process (e.g., integral stimuli such
as colors, which comprise varying values of brightness and
saturation; Little et al., 2012). Other types of decisions that
involve combining independent decisions about stimulus
dimensions (e.g., separable-dimensioned stimuli; Little et
al., 2011) or, to use a related example, searching through
multiple elements in a visual search array (Thornton &
Gilden, 2007) require the combination of separate random-
walk processes either in serial or in parallel. These architec-
tures are outlined in the following sections.

Fig. 3 Percepts sampled from distribution x1 that fall on the region-A
side of the decision boundary lead the random walk on dimension x to
take steps toward criterion+A

3 The variance parameters were freely estimated, so it was possible but
unlikely that σ2Dx might equal σ2Dy.The means of the perceptual dis-
tributions were set equal to values determined via a multidimensional-
scaling solution to similarity comparison data.

Behav Res (2012) 44:1148–1156 1151
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Serial models

In order to generate predictions for a serial processing model,
we need to take into account the order in which the multiple
single-channel random-walk processes occur. That is, to com-
pute the expected decision times and distributions of decision
times for the serial model, we need to take into account the
probabilities that process x is undertaken before process y and
that process y is undertaken before process x. Conceptually,
for a serial self-terminating model, if both of the processes end
at the –B boundary, then the response is B and the decision
time is given by whichever process occurred first. If only one
process ends at the –B boundary, then the response is B, and
the decision time is given by the elapsed time of that process
IF that process occurred first; if the B-terminating process
occurred second, then the decision time is given by the sum
of the elapsed times of both processes. Likewise, if both of the
processes end at the+A boundary, then the decision time is
given by the sum of the elapsed times of both processes, and
the predicted response is A. The notation adopted to describe
the serial model is shown in Table 1.

In this section, we derive predictions for two processes,
process x and process y, but extension to more than two
processes would be straightforward (so long as one accounts
for the combinatorial probability that each process occurs
before and after every other process).

State space of the serial model

With two processes, there are four potential outcome states:
(1) each process terminates at the+A boundary (the upper
boundary), P(Rx 0 A, Ry 0 A); (2) the first process terminates
at the+A boundary and the second process terminates that
the –B boundary, P(Rx 0 A, Ry 0 B); (3) the first process
terminates at the –B boundary and the second process ter-
minates at the+A boundary, P(Rx 0 B, Ry 0 A); and (4) both
processes terminate at the –B boundary (the lower bound-
ary), P(Rx 0 B, Ry 0 B). Because the processes are indepen-
dent, the probability of each of the states is given as follows:

P Rx ¼ A;Ry ¼ B
� � ¼ P Rx ¼ Að Þ � 1� P Ry ¼ A

� �	 

;

P Rx ¼ B;Ry ¼ A
� � ¼ 1� P Rx ¼ Að Þ½ � � P Ry ¼ A

� �
;

P Rx ¼ B;Ry ¼ B
� � ¼ 1� P Rx ¼ Að Þ½ � � 1� P Ry ¼ A

� �	 

:

ð7Þ
Choice probabilities for the serial model

If we assume that the model predicts Category B any time that
either of the single-channel processes terminates at –B, in
accord with Fig. 1, then the overall probability that the model
predicts a B response isP R ¼ Bð Þ ¼ P Rx ¼ B;Ry ¼ B

� �þ P

Rx ¼ A;Ry ¼ B
� �þ P Rx ¼ B;Ry ¼ A

� �
. The overall proba-

bility that the model predicts an A response is P R ¼ Að Þ ¼ P

Rx ¼ A;Ry ¼ A
� � ¼ 1� P R ¼ Bð Þ.

Expected decision time for the serial model

Note the following:

P X1ð Þ ¼ P X1; Y2ð Þ ¼ P Y2ð Þ ¼ 1� P X2ð Þ: ð8Þ
Formally, the overall expected decision time for the serial

model is a weighted average of the relevant outcomes, given
as follows:

E N½ � ¼ P Rx ¼ B; Ry ¼ B
� � ½P X1ð ÞEx N jRx ¼ B½ � þ 1� P X1ð ÞÞð Ey N jRy ¼ B

	 


þP Rx ¼ A;Ry ¼ B
� �

P X1ð Þ Ex N jRx ¼ A½ � þ Ey N jRy ¼ B
	 
� �þ 1� P X1ð Þð ÞEy N jRy ¼ B

	 
	 

þP Rx ¼ B;Ry ¼ A
� �

P X1ð ÞEx N jRx ¼ B½ � þ 1� P X1ð Þð Þ Ex N jRx ¼ B½ � þ Ey N jRy ¼ A
	 
� �	 


þP Rx ¼ A;Ry ¼ A
� �

Ex N jRx ¼ A½ � þ Ey N jRy ¼ A
	 
� �

:

ð9Þ

Here, Ex [N| Rx 0 A] refers to the expected duration of
process x whenever x terminates at the +A boundary, and
Ey [N| Ry 0 A] refers to the expected duration of process y
whenever y terminates at the +A boundary (see Eq. 2). In
applications of the mixed-order serial model (Fifić et al.,
2010; Little et al., 2011), the sequence probability P(X1) is
estimated as a free parameter.

Distribution of decision times for the serial model

The computation of the probabilities that a serial process
ends after the Nth step is very similar to the calculation used
for the expected decision time in Eq. 9; however, the
expected outcomes of processes x and y are replaced with
the decision time distributions computed in Eq. 3. When at

Table 1 Mathematical notation used to describe the serial processing
model

Symbol Meaning

A Category A decision

B Category B decision

Ex [N], Ey [N] Expected number of steps for process x and
process y, respectively

fx, fy Distribution of step probabilities for process
x and process y, respectively

Ri Response for process i ∈{x, y}

R Overall response

X1 Process x goes first

Y1 Process y goes first

1152 Behav Res (2012) 44:1148–1156
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least one of the processes ends at –B, the distribution of
decision times is given as

f N;R ¼ B½ � ¼ P Rx ¼ B;Ry ¼ B
� �

P X1ð Þfx N jRx ¼ B½ � þ 1� P X1ð Þð Þfy N jRy ¼ B
	 
	 


þ P Rx ¼ A;Ry ¼ B
� �

P X1ð Þ ½ fx � fy� N jRx ¼ A;Ry ¼ B
� �� �þ 1� P X1ð Þð Þfy N jRy ¼ B

	 
	 

þ P Rx ¼ B;Ry ¼ A

� �
P X1ð Þfx N jRx ¼ B½ � þ 1� P X1ð Þð Þ fx � fy

	 

N jRx ¼ B;Ry ¼ A
� �� �	 


;
ð10Þ

where fx � fy
	 


N jRx ¼ A;Ry ¼ B
� �

is the convolution of the
first-passage time distributions from each individual pro-
cess. When both processes end at the+A boundary, the
distribution of decision times is

f N ;R ¼ A½ � ¼ P Rx ¼ A;Ry ¼ A
� �

� fx � fy� N jRx ¼ A;Ry ¼ A
� �	 ð11Þ

Equations 10 and 11 are for a self-terminating serial
model. The equation for an exhaustive model (e.g., a model
that is serial exhaustive, regardless of the boundary termi-
nation of any single random walk) is simply [ fx * fy]. Once
the RT distribution of the serial process is determined, the
nondecision time distribution can be convolved as shown in
Eq. 4.

Summary

Within the logical-rule modeling framework, serial models
are used to model the decision times associated with stim-
ulus dimensions that are processed sequentially. For in-
stance, when visual features are spatially separated,
participants learn to process these features in a serial order
(Fifić et al., 2010; Little et al., 2011). By contrast, Little et
al. (2011) found that when visual features spatially over-
lapped, processing was better described as a mixture of
serial and parallel processing. In the next section, the com-
putations for the parallel model are described.

Parallel models

Parallel logical-rule models, like the serial logical-rule mod-
els, require a combination of multiple independent process-
es; however, in a parallel model, the individual walks occur
simultaneously rather than sequentially. Hence, different
assumptions are needed in order to compute the relevant
predictions.

State space of the parallel model

The four outcome states for the parallel model are identical
to the outcome states of the serial model [e.g., P�
Rx ¼ A;Ry ¼ A
� �

;P Rx ¼ A;Ry ¼ B
� �

;P Rx ¼ B;Ry ¼ A
� �

,

and P Rx ¼ B;Ry ¼ B
� �

]. Hence, the overall probability that
the model predicts an A or a B response is the same as for
the serial model.

Expected decision time for the parallel model

For a parallel self-terminating model, if both of the
processes end at the –B boundary, then the response is
B, and the decision time is given by whichever process
terminated first (i.e., the minimum processing time). If
only one of the parallel processes ends at the –B
boundary, then the response is B and the decision time
is given by the elapsed time of only that process. If
both of the processes end at the+A boundary, then the
decision time is determined by whichever process took
longer to terminate (i.e., the maximum processing time).

The overall expected decision time for the model is a
weighted average of the relevant outcomes, given as
follows:

EðNÞ ¼ P Rx ¼ B;Ry ¼ B
� �

E fminðNÞ½ �
þP Rx ¼ A;Ry ¼ B
� �

Ey N jRy ¼ B
	 


þP Rx ¼ B;Ry ¼ A
� �

Ex N jRx ¼ B½ �
þP Rx ¼ A;Ry ¼ A
� �

E fmaxðNÞ½ �;
ð12Þ

where E[fmin(N)] is the expected number of steps from
the distribution of minimum step times for process x
and process y, and E[fmax(N)] is the expected number of
steps from the distribution of maximum step times for
process x and process y.

Deriving RT distribution predictions for the parallel model
requires the computation of the distribution of minimum and
maximum finishing times for the independent random walks.
As discussed above, the expected number of steps is given by
the expected value of the distribution ofmaximum termination
times. The cumulative distribution of the maximum termina-
tion times is computed as the product of the cumulative
distribution, F Nð Þ ¼ P n <¼ N½ � ¼Pi

N
¼1 f ðiÞ , over steps

for each of the two processes (see, e.g., Ratcliff, 1978).
The cumulative distribution for the maximum process

time and minimum process time are

FmaxðNÞ ¼
YN processes

i¼1
FiðNÞ; ð13Þ

Behav Res (2012) 44:1148–1156 1153
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FminðNÞ ¼ 1�
YN processes

i¼1
1� FiðNÞ: ð14Þ

Hence, the probability mass function of the maximum
processing times is

fmaxðNÞ ¼ ΔnFmaxðNÞ; ð15Þ
and the probability mass function of the minimum process-
ing times is

fminðNÞ ¼ ΔnFminðNÞ ð16Þ
(see, e.g., Luce, 1986, p. 9). The Δ value is the discrete
derivative, which is computed as the difference between the
cumulative probabilities at step N+1 minus the cumulative
probabilities at step N (where the probability of N000).

Distribution of decision times for the parallel model

As with the serial model, to compute the distribution of
decision times for the parallel model we replace the expect-
ations in Eq. 12 with the decision time distributions from
each component random walk. If at least one process ends at
the –B boundary, the decision time probabilities are

f N ;R ¼ B½ � ¼P Rx ¼ B;Ry ¼ B
� �

fminðNÞ
þP Rx ¼ A;Ry ¼ B
� �

fy N jRy ¼ B
	 


þP Rx ¼ B;Ry ¼ A
� �

fx N jRx ¼ B½ �
ð17Þ

If both processes end at the +A boundary, the decision
time probabilities are

f N ;R ¼ A½ � ¼ P Rx ¼ A;Ry ¼ A
� �

fmaxðNÞ: ð18Þ

Summary

Parallel models are used to model the decision times associ-
ated with stimulus dimensions that are processed simulta-
neously. For the two-dimensional categorization task shown
in Fig. 1, parallel processing has only been demonstrated for
visually overlapping stimulus features. Furthermore, this par-
allel processingwas part of a trial-by-trial mixture of serial and
parallel processing (Little et al., 2011). The parametric instan-
tiation of the serial and parallel models presented here can
easily be combined by assuming that the processing is serial
on some proportion of the trials and by taking a weighted
mixture of the decision-time distributions. In other domains,
parallel processing is common; for instance, parallel processes
are often implicated in fast, “pop-out” visual search tasks
(Thornton & Gilden, 2007). However, parallel processes
may not always be of unlimited capacity, as presented here.
Instead, interactive parallel models may have processing rates
that are affected by the total number of random walks running
concurrently (Townsend, 1990). The logical-rule models
could be extended to model interactive parallel processing

by allowing step counts to be shared between channels (cf.
Eidels et al., 2011).

Discussion

Theoretical and methodological advances have made it pos-
sible to design experiments that can differentiate serial and
parallel models (i.e., the systems factorial technology; Fifić,
Nosofsky, & Townsend, 2008; Townsend & Nozawa, 1995;
Townsend & Fifić, 2004; Townsend & Wenger, 2004a).
Even research in visual search, where the ambiguity of the
existing data has been enough to prompt the declaration of
the serial-versus-parallel debate as a dead-end, has shown
renewed interest in differentiating serial and parallel models
by using better experimental techniques (Thornton & Gilden,
2007) and by focusing on full RT distributions (Donkin
& Shiffrin, 2011; Wolfe, Palmer, & Horowitz, 2010). In
categorization, questions about the serial versus parallel
processing of stimuli comprising multiple dimensions have
only recently begun to be asked (Bradmetz & Mathy, 2008;
Fifić et al., 2010; Fifić et al., 2008; Lafond, Lacouture, &
Mineau, 2007; Little et al., 2011). Consequently, having
models that can produce predictions at the level of full RT
distributions is central to uncovering the underlying archi-
tecture used to process multidimensional stimuli. The com-
putations provided in this report allow for efficient
predictions to be generated from all of the logical-rule
categorization models.

The focus of this report has been on discrete-time random-
walk models; however, any sequential-sampling model could
be substituted (e.g., continuous-time diffusion [Ratcliff, 1978]
or accumulator models [Brown & Heathcote, 2009]). Further-
more, any distribution over RTs can be substituted for the
random-walk model. For example, Townsend and Ashby
(1983) used an exponential distribution to model RTs from a
variety of serial and parallel processes. Likewise, other meth-
ods may be used to generate the step probabilities, p and q; for
example, EBRW (Nosofsky & Palmeri, 1997) uses the
summed similarity between a probe stimulus and stored exem-
plars to compute p; Smith and Ratcliff (2009) use a model of
visual short-term memory to drive the decision-making pro-
cess; and both Ratcliff, Van Zandt, and McKoon (1999) and
Donkin, Brown, Heathcote, and Wagenmakers (2011) freely
estimate the rate at which evidence is accumulated toward
each boundary.

Recently, nonparametric methods have been developed to
differentiate more complex architectures, such as interactive
parallel models, with facilitative or inhibitory cross-talk
between the processing channels (Eidels et al., 2011). In
addition, nonparametric measures of capacity and parallel
interaction have been shown to correspond closely to the
drift rate in parametric sequential-sampling models such as
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the single-channel models described here (Eidels et al.,
2010). Future work will be needed to derive predictions
for more complicated parametric parallel models in order
to capture the processes underlying facilitatory and inhibi-
tory interactions in categorization.

Author note Preparation of this article was facilitated by ARC Dis-
covery Grant DP120103120. MATLAB code for the models described
here, along with a description of a parameter estimation routine, are
available in the supplementary materials. The software is available at
www.psych.unimelb.edu.au/research/labs/knowlab/documents/
LogicalRuleModels.zip.
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